BCN 5905 Advanced Building Information Modeling

INSTRUCTOR: R. Raymond Issa, Ph.D., J.D., P.E., F.ASCE, API

CLASSROOM: RNK 106/201

OFFICE: RNK 325/338 **OFFICE HOURS:** By Appointment

EMAIL: raymond-issa@ufl.edu

COURSE DESCRIPTION

This course will cover the fundamental principles and practices of using building information models for model management, including quantification, scheduling, and coordination. The course will also present the use of advanced information systems in the construction context, such as parametric modeling, creating infrastructure models, and reality capture. The goal of this course is to develop the students' understanding of how cloud-connected tools, collaboration tools, and advanced construction technologies can transform and improve the construction management process to aid in project success.

COURSE OBJECTIVES

- 1. Associate construction schedules with building information models and create videos to showcase the developed models and the construction process.
- 2. Coordinate models from different disciplines and work on solving clashes within a coordination meeting.
- 3. Develop infrastructure models that incorporate geographic information systems, building models, and civil engineering models.
- 4. Create architectural, structural, and systems parametric families in Revit.
- 5. Develop an understanding of the different reality capture techniques and use Recap Pro to register scans.
- 6. Explain the benefits of generative design in the architecture, construction, engineering, and operations industry.
- 7. Explore several technologies that use building information models in different project stages, such as virtual reality, augmented reality, digital twins, robotics, manufacturing, energy analysis and facility management platforms.
- **8.** Complete class group project to develop an immersive environment or digital twin for a structure.

REQUIRED SOFTWARE

You are required to install the software on your personal computers. All software are available free of charge.

- 1. Autodesk Software available through the Autodesk Education Community http://www.autodesk.com/education/home
 - a. Create a free account, using your ufl.edu account, and download the following software,
 - i. Revit 2023
 - ii. Recap Pro
 - iii. Navisworks Manage 2023

- iv. Infraworks 2023
- v. TwinMotion
- vi. Tandem
- 2. Autodesk Construction Cloud Platform
 - a. Access to the online platform will be provided by the instructor at the start of the course and access will be removed following the end of the course.
- 3. CMBuilder
 - a. Create a free account, using your ufl.edu account, and download CMBuilder
- 4. Lumion
 - a. Create a free account, using your ufl.edu account, and download Lumion

GRADING CRITERIA

Assignments

The assignments in this class are designed to encourage you to go beyond the lecture and explore different tools to apply in your models. All assignments are individual. Students are expected to submit their assignments by the due date. The class has 8 assignments. Each assignment is worth 10%. Assignments are due by the time specified on Canvas. Late assignments are not accepted.

Final Project

The final project in this course is intended to be an opportunity for you demonstrate the skills you have acquired over the course of the semester. The project is divided into a research component and a model development component. The project is worth 20% of the grade.

Grade Distribution

The grade of the class is computed as follows:

Description	Percentage of Final Grade	
Assignments	80%	
Final Project	20%	
Total	100%	

The letter grades will be computed according to the following scale:

A = 90.0 AND ABOVE	C = 70.0 to 76.9
$A^{-} = 87.0 \text{ to } 89.9$	$C^{-} = 67.0 \text{ to } 69.9$
B = 80.0 to 86.9	D = 60.0 to 66.9
$B^{-} = 77.0 \text{ to } 79.9$	E = below 60

ACCESSING UNIVERSITY ACADEMIC POLICIES AND CAMPUS RESOURCES

To support consistent and accessible communication of university-wide student resources, please use this link to academic policies and campus resources: https://go.ufl.edu/syllabuspolicies.

CLASS SCHEDULE

		Course Topic	Assignment Due
BUILDI	ING IN	FORMATION MODELING	
1		 Course Overview: Syllabus and schedule review Overview of the required software Revit Overview: Review of architectural, structural, and mechanical modeling Review of project information and organization 	
2		Advanced Architectural Modeling in Revit: • Family Editing • Masses	
3		Advanced Structural Modeling: Reinforcement Steel Connections Using Revit and Advance Steel together Using Allplan Advanced Mechanical Modeling: Heating and Cooling Loads Autodesk Insight	Assignment 1: Architectural Model
4		 BIM for Heavy Construction Infraworks and Revit CMBuilder Site Layout Autodesk Point Layout Robotic Total Station 	Assignment 2: Structural Model
PROGR	RAMMI	NG AND GAME ENGINES	
5		 Intro to Programming Writing your first computer program using AI 	
6		DynamoGetting startedInteraction with Revit	Assignment 3: Coding using C#
7		Game Engines	Assignment 4: Dynamo Script

8	 Virtual Reality VR applications VR Hardware and Software Revit Live Unity + Oculus Rift + HoloLens 2 Augmented Reality AR Applications AR Hardware and Software AR with HoloLens AR with Magic Leap 	Assignment 5: Unity Application
SIMUL	ATION	
9 POPO	 4D Simulation in Synchro Introduction, getting started, importing file Scheduling Creating simulations FICS AND AUTOMATION	es
		A 1 1
10	 Intro to additive manufacturing Intro to 3D printing technologies & mater Design and print using Fusion 	Assignment 6: Synchro Application
	TY CAPTURE	A •
11	 4/10 Photogrammetry Introduction Scanning an object Processing scans Laser Scanning Getting started Scanner settings Indoor scanning Outdoor scanning Processing scans 	Assignment 7: 3D object print out of scaled model
12	 ReCap and Revit Using point cloud data in Revit Processing point clouds 	
13	 <u>Digital Twin Development</u> Data Management Plan Data Collection, Storage and Accessibility 	Assignment 8: BIM Model of Point Cloud data
14 WDAD	 BIM to Digital Twin Transition LOD for DT Data Integration Simulation and Optimization 	
WRAP-		Einal Dani' 4
15	 Final Presentation Class reflections VR/AR Immersive Environment or DT Pro Presentations 	Final Project: Choice of Ject Immersive Environment Or Digital Twin

^{**}This syllabus represents the current course plans and objectives. As the semester progresses, those plans may need to change to enhance the class learning opportunity. Such changes, clearly communicated, are not unusual and should be expected.