The planning, design, and construction of the built environment are on the verge of a fundamental transformation. A key element of this transformation is a radical shift in paradigm from planning and design representations of unconnected data to practices with an overwhelming amount of information-rich data. Artificial Intelligence (AI), in particular Machine Learning (ML), provides planners, designers, and constructors with new models and methods to engage in these data-heavy processes to synthesize meaningful information for all areas of their practice, from planning to design to fabrication to erection. This course provides the College of Design, Construction, and Planning (DCP) students an opportunity to learn about the application of AI in their disciplines.

CLASS LOCATION: ZOOM

CLASS MEETING TIMES: tbd

INSTRUCTORS SPRING: Dr. Karla Saldana Ochoa

OFFICE HOURS: tbd

COURSE WEBSITE: http://elearning.ufl.edu

COURSE DESCRIPTION:
An introduction to Artificial Intelligence (AI) and its applications to real-world problems in planning, design, and construction of the built environment. Includes application in professional practice in architecture, construction management, interior design, landscape architecture, sustainability and the built environment, and urban and regional planning.

COURSE OBJECTIVES:
● Understand how AI technologies can be used to guide the planning, design, and construction of the built environment.
● Apply existing AI models in architecture, construction management, interior design, landscape architecture, sustainability and the built environment, and urban and regional planning disciplines.
● Build a simple Machine Learning model.
● Understand the current limitations of machine learning technologies.

INSTRUCTIONAL METHODS:
The class meets three lecture hours per week.

COURSE POLICIES:
ATTENDANCE POLICY:
Attendance and participation in class activities are required. Attendance and participation grades will be computed in proportion to the number of presences on the days the rolls were taken and participation on a given topic in the class forum. Requirements for class attendance and make-up quizzes, assignments, and other work in this course are consistent with university policies that can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx

COURSE EVALUATION
Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at https://gatorevals.aa.ufl.edu/students/. Students will be notified when the evaluation period opens, and can complete evaluations through the email they receive from GatorEvals, in their Canvas course menu under GatorEvals. Summaries of course evaluation results are available to students at https://gatorevals.aa.ufl.edu/public-results/

UNIVERSITY POLICY ON ACCOMMODATING STUDENTS WITH DISABILITIES:
Students requesting accommodation for disabilities must first register with the Dean of Students Office (https://disability.ufl.edu/). The Dean of Students Office will provide documentation to the student who must then provide this documentation to the instructor when requesting accommodation. You must submit this documentation prior to submitting assignments or taking the quizzes or exams. Accommodations are not retroactive, therefore, students should contact the office as soon as possible in the term for which they are seeking accommodations.
UNIVERSITY POLICY ON ACADEMIC MISCONDUCT:
Academic honesty and integrity are fundamental values of the University community. Students should be sure that they understand the UF Student Honor Code at https://sccr.dso.ufl.edu/policies/student-honor-code-student-conduct-code/. Although joint work on assignments may be acceptable in some cases, duplication of an assignment, both manually or by computer will be considered an act of academic dishonesty and dealt with accordingly. On all work submitted for credit by students at the university, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

GETTING HELP:
For issues with technical difficulties for E-learning in Canvas, please contact the UF Help Desk:
- Learning-support@ufl.edu
- (352) 392-HELP - select option 2
- https://lss.at.ufl.edu/help.shtml

<table>
<thead>
<tr>
<th>GRADING POLICIES:</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
</tr>
<tr>
<td>Module Assignments (6 total@10% each)</td>
<td>60%</td>
</tr>
<tr>
<td>Final Group Project</td>
<td>30%</td>
</tr>
<tr>
<td>Attendance and Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

GRADING SCALE:
Grades will be computed according to the following scale:
A=93-100; A- =90-92.9; B+ =87-89.9; B=83-86.9; B- =80-82.9; C+ = 77-79.9; C=73-76.9; C- =70-72.9; D+ =67-69.9; D=63-66.9; D- =60-62.9; E<60.

- The attendance grade will be computed in proportion to the number of presences on the days the rolls were taken, and the participation grade is based on responding to a given discussion topic in the class forum.

- At the end of each module, an assignment that covers topics discussed in that module will be given. Specific evaluation criteria will be provided with each assignment.

- A final group project will be assigned that requires implementing existing AI algorithms in a project in the built environment to facilitate planning, design, and construction strategies.
Reading Materials:

- Stanislas Chaillou, Harvard Graduate School of Design | Feb. 24th, 2019 https://towardsdatascience.com/ai-architecture-f9d78c6958e0
- Article: Mimi Zeiger; "Live and Learn"; Landscape Architecture Magazine, vol. 109, Iss.2, Feb 2019, pp. 78-89

Software / Language: Python, Jupyter Notebooks

AI Category: Use-AI

Use & Apply AI: Applying AI knowledge, concepts and applications in different scenarios. AI course content is over 50%

AI Student Learning Outcomes

Know and Understand
SLO2. Recognize, identify, describe, define and/or explain applications of AI in multiple domains.
 Lecture Weeks 01, 02, 03, 04, 06, 08, 10

Use and Apply
SLO3. Select and/or utilize AI tools and techniques appropriate to a specific context and application.
 Assignments: A1, A2, A3, A4, Final Project
COURSE SCHEDULE:

<table>
<thead>
<tr>
<th>WEEK</th>
<th>DISCIPLINES</th>
<th>CONTACT HOURS</th>
<th>APPLICATIONS IN DCP</th>
<th>CLASSES</th>
<th>ASSIGNMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEK 01</td>
<td>AI/ML</td>
<td>3</td>
<td>-</td>
<td>Introduction to AI (SLO2). Lecture on Machine Learning, Neural Networks, Deep Learning, Back propagation, and examples of application in the Built Environment Practice</td>
<td>-</td>
</tr>
<tr>
<td>WEEK 02</td>
<td>Data Collection, Visualization, & Coding</td>
<td>6</td>
<td>-</td>
<td>Collecting Data (SLO2). Lecture on crawlers, scrapers, API keys. Run python code to use crawlers and API keys to systematically collect images and text from web databases based on specific context and application</td>
<td>A1 (SLO3): Collect Data from existing websites using the materials taught in class and preprocess the collected data. 15 points</td>
</tr>
<tr>
<td>WEEK 03</td>
<td>Computer Vision</td>
<td>6</td>
<td>Image analysis</td>
<td>Computer vision (SLO2). Lecture on CNNs overview and theory. Explanation of Image analysis, Remote sensing, SLAM, and Point clouds</td>
<td>A2 (SLO3): Apply Computer vision algorithms. Run notebook and Q1: recognize objects on collected images. Q2. Segment objects on collected images. 15 points</td>
</tr>
<tr>
<td>WEEK 04</td>
<td>Generative Models</td>
<td>6</td>
<td>Generative design</td>
<td>Generative Algorithms (SLO2). Lecture on Generative algorithms, overview, and theory. Explanation of GANs, Diffusion models and examples in computational design.</td>
<td>A3 (SLO3): Conduct a study on how different attributes modify the final output from sketch to rendering application on architecture context with generative algorithms. 15 points</td>
</tr>
<tr>
<td>WEEK 05</td>
<td>NLP</td>
<td>6</td>
<td>Text mining Sentiment analysis</td>
<td>Natural Language Models (SLO2). Lectures on Transformers and Large Language Models: overview and theory</td>
<td>A4 (SLO3): Run python code exercise using BERT (a transformer) as a base model to perform text classification. 15 points</td>
</tr>
<tr>
<td>WEEK 06</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>Final Project and Presentations</td>
<td>Final project (SLO3): specific application based on students' interest. 40 points</td>
</tr>
</tbody>
</table>

Disclaimer: This syllabus represents the current plans and objectives. As we go through the semester, those plans may need to change to enhance the class learning opportunity. Such changes, communicated clearly, are not unusual and should be expected.